Proposition $f: U \mapsto V, g: V \mapsto \mathbb{R}$
U and V are open. $x_{0} \in U, f$ is differentiable at x_{0}, g is differentiable at $f\left(x_{0}\right)$. Then goo is differentiable at x_{0} and the derivative of goof at $x_{0}:(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right)$
prof. $\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}$

$$
=\left(\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{f(x)-f\left(x_{0}\right)}\right) \cdot\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right) \text { if } f(x) \neq f\left(x_{0}\right)
$$

Let $y_{0}=f\left(x_{0}\right), A: V \mapsto \mathbb{R}$, and

$$
A(y)=\left\{\begin{array}{lll}
g(y)-g\left(y_{0}\right) & \text { if } y \neq y_{0} . \\
y-y_{0} & . \\
g^{\prime}\left(y_{0}\right) & \text { if } y=y_{0} .
\end{array}\right.
$$

$$
\Rightarrow \lim _{y \rightarrow y} A_{1}(x)=g^{\prime}\left(y_{0}\right)
$$

Since y is differentiable at $y_{0}, \lim _{n \rightarrow \infty} \frac{g(y)-g\left(y_{0}\right)}{y-y_{0}}=g^{\prime}\left(y_{0}\right)$.

Since g is continuous, $A(y)$ is continuous tor.
So, $\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}=A(f(x)) \cdot \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
So, $\lim _{x \rightarrow x_{0}} \frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} A(f(x)) \cdot \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$

$$
=g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right)
$$

Proposition $f: U \mapsto \mathbb{R}, U \subset \mathbb{R}, U$ is open.
Assume f attains a local maximum at $x_{0} \in U$.
Then, $f^{\prime}\left(x_{0}\right)=0$.
prof: If $x>x_{0}, \lim _{x \rightarrow x_{+}^{+}} \frac{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}}{<0}=f^{\prime}(x) \leqslant 0$
If $x<x_{0}, \lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}(x) \geqslant 0$
Thus, $f^{\prime}(x)=0$.

Rolled's Lemma :
$f:[a, b] \mapsto \mathbb{R}$ continuous and differentiable in (a, b).
and $f(a)=f(b)=0$. Then

$$
\exists c \in(a, b) \text {, s.t. } f^{\prime}(c)=0 \text {. }
$$

proof. Since $[a, b]$ is compact, $f(x)$ is continuous $f([a, b])$ is also compact. Then

$$
\exists c_{1}, c_{2} \in[a, b], \text { s.t. } f\left(c_{1}\right) \leqslant f(x) \leqslant f\left(c_{2}\right) \text {. }
$$

for all $x \in[a, b]$.
If $f\left(c_{1}\right)<0 \Rightarrow c_{1} \neq a$ and $c_{1} \neq b$.
\Rightarrow from last proposition, $f^{\prime}\left(c_{1}\right)=0$.
If $f\left(c_{1}\right)$ but $f\left(c_{2}\right)>0 \Rightarrow c_{2} \neq a$ and $c_{2} \neq b$ and $f^{\prime}\left(c_{2}\right)=0$.
If $f\left(c_{1}\right)=f\left(c_{2}\right)=0 \Rightarrow f(x)=0 \quad \forall x \in[a, b]$

$$
\Rightarrow f^{\prime}(c)=0 \quad \forall c \in(a, b)
$$

Theorem (Dea n-Value) $f:[a, b] \mapsto \mathbb{R}, f$ is continuous and differentiable in (a, b). Then $\exists c \in(a, b)_{\uparrow y}$ st. $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

proof: Let

$$
\begin{aligned}
& g(x)=f(x)-\left[f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)\right] \\
& \Rightarrow g(a)=0, \quad g(b)=0
\end{aligned}
$$

$g:[a, b] \mapsto \mathbb{R}$ continuous and differentiable in (a, b).
Now, apply Rolls's Lemma, $\exists c \in(a, b)$, sit.

$$
\begin{aligned}
& g^{\prime}(c)=0 \quad \Rightarrow \\
& g^{\prime}(c)=f^{\prime}(c)-\left(\frac{f(b)-f(a)}{b-a}\right)=0 \\
& \Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
\end{aligned}
$$

Corollary: $f:(a, b) \mapsto \mathbb{R}$ differentiable. and $f^{\prime}(x)=0 \quad \forall x \in(a, b)$. Then $\exists k \in \mathbb{R}$ s.t. $f(x)=k$ for all $x \in(a, b)$.
prof: Let $x_{0} \in(a, b)$ and $k=f\left(x_{0}\right)$. Let $x \in(a, b), x \neq x_{0}, B_{y}$ Mean-value Theorem. $\exists \subset \in\left(x_{0}, x\right)$ or $C \in\left(x, x_{0}\right)$. sit.

$$
f^{\prime}(c)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=0
$$

Then $f(x)=f\left(x_{0}\right)=K$.

Definition: $f: U \mapsto \mathbb{R}, U \subset \mathbb{R}$. f is
(1) Increasing: $a<b, a, b \in U \Rightarrow f(a) \leqslant f(b)$;
(2) Strictly increasing: $a<b, a, b \in U \Rightarrow f(a)<f(b)$;
(3) Similar definition for clecreasing.

Corollary: $f:(a, b) \mapsto \mathbb{R}$, differentiable.
$f^{\prime}(x) \geqslant 0 \quad \forall x \in(a, b) \Rightarrow f(x)$ is increasing in (a, b).
proof: Let $a<x_{1}<x_{2}<b$. By Mean-value Theorem.
$\exists C \in\left(x_{1}, x_{2}\right)$, sit. $f(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \geqslant 0$
Since $x_{2}-x_{1}>0$, then $f\left(x_{2}\right)-f\left(x_{1}\right) \geqslant 0$
$\Rightarrow f\left(x_{2}\right) \geqslant f\left(x_{1}\right)$. Thus, f is increasing in (a, b).

Similar statement with decreasing and $f^{\prime}(x) \leqslant 0$.

Definition: $U \subset \mathbb{R}, U$ open $f: U \mapsto \mathbb{R}$.
(1) f is n times differentiable if $f^{(n-1)}: U \mapsto \mathbb{R}$ is differentiable where

$$
f^{(0)}=f, f^{(k)}=\left(f^{(k-1)}\right)^{\prime} .
$$

(2) $x_{0} \in U, f$ is n times differentiable at x_{0} if f is $n-1$ times differentiable at some V open set containing x_{0}, and $f^{(n-1)}$ is differentiable at x_{0}.

Lemma U open interval, $f: U \mapsto \mathbb{R}$. f is $n+1$ time differentiable. Define $R_{n}(b, a)$ as

$$
f(b)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(b-a)^{i}+R_{n}(b, a) .
$$

Then $\quad \frac{d}{d x} R_{n}(b, x)=-\frac{f^{(n+1)}(x)}{n!}(b-x)^{n}, \forall x \in U$.
proof: $\quad f(b)=\sum_{i=1}^{n} \frac{f^{(i)}(x)}{i!}(b-x)^{i}+R_{n}(b, x)$

$$
\Rightarrow \frac{d}{d x} R_{n}(b, x)=\frac{f_{n!}^{(n+1)}(x)}{n=n}(b-x)^{n}
$$

Taylor Expansion U open in $\mathbb{R}, \quad f: U \mapsto \mathbb{R}$ $f(n+1)$ times differentiable. $a, b \in U$ then

$$
f(b)=\sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!}(b-a)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}
$$

where c is some point between a and b.
proof: Let $R_{n}(b, a)=f(b)-\sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!}(b-a)^{k}$ by Lemma, $\frac{d}{d x} R_{n}(b, a)=-\frac{f_{(x)}^{(i+1)}}{n!}(b-x)^{n}$

Let $K=\frac{(n+1)!}{(b-a)^{n+1}} \quad R_{n}(b, a)$
Let $\varphi: U \mapsto \mathbb{R}, \varphi(x)=R_{n}(b, x)-\frac{k(b-x)^{n+1}}{(n+1)!}$

$$
\begin{aligned}
\Rightarrow \varphi(b) & =R_{n}(b, b)-\frac{k(b-b)^{n}}{(n+1)!}=0 \\
\varphi(a) & =R_{n}(b, a)-\frac{(n+1)!}{(b-a)^{n+1}} R_{n}(b, a) \frac{(b-a)^{n+1}}{(n+1)!}=0
\end{aligned}
$$

then, by Rolle's Lemma, $\exists c$ between a and b sit. $\varphi^{\prime}(c)=0$.

$$
\begin{aligned}
\varphi^{\prime}(x) & =\frac{d}{d x} R_{n}(b, x)+\frac{k}{n!}(b-x)^{n} \\
& =-\frac{f^{(n+1)}(x)}{n!}(b-x)^{n}+\frac{(n+1)!}{(b-a)^{n+1}} R_{n}(b, a) \frac{(b-x)^{n}}{n!}
\end{aligned}
$$

Set $x=c$,

$$
0=-\frac{f_{(c+1)}^{(c)}}{n!}(b-c)^{n}+\frac{(n+1)(b-c)^{n}}{(b-a)^{n+1}} R_{n}(b, a)
$$

Thus, $\quad R_{n}(b, a)=\frac{f_{(c)}^{(n+1)}}{(n+1)!}(b-a)^{n+1}$.

